Step 3 - Summarize Access¶
This script reads modal impedances from skim files, specifies decay rates by purpose, and calculates purpose-specific OD decay factors. It then summarizes access scores using zonal activity data and the calculated decay factors.
- Workflow:
Read data - Travel cost skims - Zonal activity data
Specify decay rates
Calculate decay factors (using emma.Decay methods)
Summarize access scores (using emma.od.summarizeAccess)
Export results
Functions¶
The following functions are referenced in this script, from the wsa.summarize_access (or access) submodule:
-
wsa.access.
loadInputZones
(lu_config, taz_table='MAPC_TAZ_data.xlsx', taz_sheet='Zdata', block_table_hh='Household_Types_by_Block.csv', block_table_emp='Jobs_Enroll_by_Block.csv', taz_id='TAZ', block_id='block_id')¶ Reads zone input tables from default locations.
- Parameters
lu_config (String) –
taz_table (String, default="MAPC_TAZ_data.xlsx") –
taz_sheet (String, default="Zdata") –
block_table_hh (String, default="Household_Types_by_Block.csv") –
block_table_emp (String, default="Jobs_Enroll_by_Block.csv") –
taz_id (String, default="TAZ") –
block_id (String, default="block_id") –
- Returns
taz_df (pd.DataFrame)
block_hh_df (pd.DataFrame)
block_emp_df (pd.DataFrame)
-
wsa.access.
decaysFromTable
(decay_table, **selection_criteria)¶ Create Decay objects based on parameters specified in a csv file.
- Parameters
decay_table (String) – Path to a well-formed csv file with decay curve specifications.
selection_criteria – Keyword arguments for selecting rows from the table when constructing decay objects (Mode=”auto” will only construct auto decay curves, e.g.).